高溫電絕緣涂層 用銅、鋁等金屬做成的導線外面,或有絕緣漆、或有塑料、橡膠等絕緣包皮。但是,絕緣漆、塑料、橡膠都怕高溫,一般超越200℃就會集化,失掉絕緣功用。而許多電線正需要在高溫下工作,那該怎么辦呢?對,讓高溫電絕緣涂層來協助,這種涂層實際上是一種陶瓷涂層,它除了能在高溫下堅持電絕緣功用外,還能與金屬導線嚴密“聯合”在一起,做到“天衣無縫”,任你將導線七繞八彎,它們也不會別離,這種涂層十分細密,涂上它,兩根電壓差很大的導線碰在一起,也不會發作擊穿現象。高溫電絕緣涂層根據其化學成分的不同,可分為許多品種。如石墨導體表面上的氮化硼或氧化鋁、氟化銅涂層,到400℃仍有超卓的電絕緣功用。金屬導線上的琺瑯到700℃,磷酸鹽為基的無機粘結劑涂層到1000℃,等離子噴涂氧化鋁涂層在1300℃,都仍堅持著超卓的電絕緣功用。 高溫電絕緣涂層已在電力、電機、電器、電子、航空、原子能、空間技術等方面獲得了廣泛的運用。
汽車輕量化設計是汽車工業發展的趨勢,一方面,輕量化可以有效降低尾氣排放量;另一方面,汽車輕量化設計有利于提高整車燃油經濟性、車輛控制穩定性、安全性等性能水平。同時隨著國家對車輛排放要求的嚴格控制以及燃油價格的不斷攀升,各大發動機制造商將研發重心放在了節能減排上。缸孔涂層在珩磨后形成具有開放且分散的多孔表面。正是這些平緩圓整的小孔減小了燃油在燃燒室和活塞環的暴露面積;同時減輕了刮油環的切向力,使活塞環更順暢地進入流體動力學狀態,顯著降低摩擦阻力和磨損,從而進一步降低油耗和竄氣的可能性。特殊的多孔表面儲油結構不會像平頂珩磨工藝的網紋結構那樣在珩磨過程中被磨掉。隨著工作磨損,當涂層厚度逐漸減小時,新的潤滑孔又會出現在涂層表面,保證了性能的可持續性。
噴涂,對于金粉來說不算陌生的技術。以實現低摩擦、低油耗、高耐磨性和高耐腐蝕性的目標,提高發動機性能,實現發動機輕質化。但你見過內孔熱噴涂嗎?據說這是目前先進的發動機內孔加工技術內孔等離子噴涂工藝即采用大氣等離子噴涂工藝將粉末狀材料涂覆在氣缸運行內表面,選擇不同的噴涂粉末以實現低摩擦、低油耗、高耐磨性和高耐腐蝕性的目標。它是一種內孔熱噴涂加工工藝,屬于歐洲先進技術——無缸套技術,它在國外高端汽車品牌早已獲得了成熟運用,例如布加迪、保時捷、阿斯頓馬丁、大眾、奧迪等汽車發動機,斯堪尼亞卡車等柴油機以及ROTAX等航空發動機及摩托發動機(如寶馬、雅馬哈)。該技術另外的一個重要應用就是針對高端二手發動機、高端商用車柴油發動機缸套進行再制造。
焊絲的爆斷的位置主要由于焊絲在該點附近產生電阻熱的大小,也就是其接觸電阻的大小。焊絲與導電嘴的接觸電阻隨時間的變化,基本不變。而焊絲與母材的接觸電阻在與母材接觸瞬間為無窮大,隨著短路電流的增加,周邊五金噴涂接觸點開始軟化,使接觸面積增加,于是接觸電阻值急劇下降。因此,為了確保引弧成功,希望短路電流增長速度越大越好,接觸點的衰減速度越慢越好。也就是接觸電阻很大時,短路電流增加到較高的值,從而使接觸點發生爆斷。提高引弧成功率的方法主要有:在老式的焊機上,常常利用旁路電路將直流電感短接,而引弧成功后再將該電感接入;在逆變焊機中,充分利用電子電抗器調節電源動特性,而選擇很小的直流電感,因此逆變焊機的引弧較可靠。上海五金噴涂在開始引弧時,要令焊絲輸送速度慢一些,以便減小焊絲與母材的壓力增長速度,接觸點的電阻值衰減速度減緩。送絲速度太慢也不利,通常選用1.5~3m/min。引弧成功后,應立即轉為正常送死速度。